Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 266(Pt 2): 131332, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574905

RESUMO

Polyhydroxyalkanoates (PHAs) are promising alternatives to existing petrochemical-based plastics because of their bio-degradable properties. However, the limited structural diversity of PHAs has hindered their application. In this study, high mole-fractions of Poly (39 mol% 3HB-co-17 mol% 3 HV-co-44 mol% 4 HV) and Poly (25 mol% 3HB-co-75 mol% 5 HV) were produced from 4- hydroxyvaleric acid and 5-hydroxyvaleric acid, using Cupriavidus necator PHB-4 harboring the gene phaCBP-M-CPF4 with modified sequences. In addition, the complex toxicity of precursor mixtures was tested, and it was confirmed that the engineered C. necator was capable of synthesizing Poly (32 mol% 3HB-co-11 mol% 3 HV-co-25 mol% 4 HV-co-32 mol% 5 HV) at low mixture concentrations. Correlation analyses of the precursor ratio and the monomeric mole fractions indicated that each mole fractions could be precisely controlled using the precursor proportion. Physical property analysis confirmed that Poly (3HB-co-3 HV-co-4 HV) is a rubber-like amorphous polymer and Poly (3HB-co-5 HV) has a high tensile strength and elongation at break. Poly (3HB-co-3 HV-co-4 HV-co-5 HV) had a much lower glass transition temperature than the co-, terpolymers containing 3 HV, 4 HV and 5 HV. This study expands the range of possible physical properties of PHAs and contributes to the realization of custom PHA production by suggesting a method for producing PHAs with various physical properties through mole-fraction control of 3 HV, 4 HV and 5 HV.

2.
J Biotechnol ; 387: 12-22, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522773

RESUMO

5-hydroxyvaleric acid (5-HV) is a versatile C5 intermediate of bio-based high-value chemical synthesis pathways. However, 5-HV production faces a few shortcomings involving the supply of cofactors, especially α-ketoglutaric acid (α-KG). Herein, we established a two-cell biotransformation system by introducing L-glutamate oxidase (GOX) to regenerate α-KG. Additionally, the catalase KatE was adapted to inhibit α-KG degradation by the H2O2 produced during GOX reaction. We searched for the best combination of genes and vectors and optimized the biotransformation conditions to maximize GOX effectiveness. Under the optimized conditions, 5-HV pathway with GOX showed 1.60-fold higher productivity than that of without GOX, showing 11.3 g/L titer. Further, the two-cell system with GOX and KatE was expanded to produce poly(5-hydroxyvaleric acid) (P(5HV)), and it reached at 412 mg/L of P(5HV) production and 20.5% PHA contents when using the biotransformation supernatant. Thus, the two-cell biotransformation system with GOX can potentially give the practical and economic alternative of 5-HV production using bio-based methods. We also propose direct utilization of 5-HV from bioconversion for P(5HV) production.

3.
Polymers (Basel) ; 16(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475335

RESUMO

Polybutylene succinate (PBS) stands out as a promising biodegradable polymer, drawing attention for its potential as an eco-friendly alternative to traditional plastics due to its biodegradability and reduced environmental impact. In this study, we aimed to enhance PBS degradation by examining artificial consortia composed of bacterial strains. Specifically, Terribacillus sp. JY49, Bacillus sp. JY35, and Bacillus sp. NR4 were assessed for their capabilities and synergistic effects in PBS degradation. When only two types of strains, Bacillus sp. JY35 and Bacillus sp. NR4, were co-cultured as a consortium, a notable increase in degradation activity toward PBS was observed compared to their activities alone. The consortium of Bacillus sp. JY35 and Bacillus sp. NR4 demonstrated a remarkable degradation yield of 76.5% in PBS after 10 days. The degradation of PBS by the consortium was validated and our findings underscore the potential for enhancing PBS degradation and the possibility of fast degradation by forming artificial consortia, leveraging the synergy between strains with limited PBS degradation activity. Furthermore, this study demonstrated that utilizing only two types of strains in the consortium facilitates easy control and provides reproducible results. This approach mitigates the risk of losing activity and reproducibility issues often associated with natural consortia.

4.
Nat Commun ; 15(1): 1024, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310093

RESUMO

Osteoarthritis (OA) is a progressive and irreversible degenerative joint disease that is characterized by cartilage destruction, osteophyte formation, subchondral bone remodeling, and synovitis. Despite affecting millions of patients, effective and safe disease-modifying osteoarthritis drugs are lacking. Here we reveal an unexpected role for the small molecule 5-aminosalicylic acid (5-ASA), which is used as an anti-inflammatory drug in ulcerative colitis. We show that 5-ASA competes with extracellular-matrix collagen-II to bind to osteoclast-associated receptor (OSCAR) on chondrocytes. Intra-articular 5-ASA injections ameliorate OA generated by surgery-induced medial-meniscus destabilization in male mice. Significantly, this effect is also observed when 5-ASA was administered well after OA onset. Moreover, mice with DMM-induced OA that are treated with 5-ASA at weeks 8-11 and sacrificed at week 12 have thicker cartilage than untreated mice that were sacrificed at week 8. Mechanistically, 5-ASA reverses OSCAR-mediated transcriptional repression of PPARγ in articular chondrocytes, thereby suppressing COX-2-related inflammation. It also improves chondrogenesis, strongly downregulates ECM catabolism, and promotes ECM anabolism. Our results suggest that 5-ASA could serve as a DMOAD.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Masculino , Animais , Camundongos , Mesalamina/farmacologia , Mesalamina/uso terapêutico , PPAR gama/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Modelos Animais de Doenças
5.
Bioresour Technol ; 395: 130355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272145

RESUMO

In this study, the goal was to enhance the tolerance of Clostridium acetobutylicum ATCC 824 to biomass-based inhibitory compounds for biohydrogen production and evaluate various known genes that enhance the production of biochemicals in various hosts. The introduction of phaP, the major polyhydroxyalkanoate granule-associated protein that has been reported as a chaperone-like protein resulted in increased tolerance to inhibitors and leads to higher levels of hydrogen production, cell growth, and glucose consumption in the presence of these inhibitors. It was observed that the introduction of phaP led to an increase in the transcription of the hydrogenase gene, whereas transcription of the chaperone functional genes decreased compared to the wild type. Finally, the introduction of phaP could significantly enhance biohydrogen production by 2.6-fold from lignocellulosic hydrolysates compared to that of wild type. These findings suggested that the introduction of phaP could enhance growth and biohydrogen production, even in non-polyhydroxyalkanoate-producing strains.


Assuntos
Clostridium acetobutylicum , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Lectinas de Plantas/genética , Lectinas de Plantas/metabolismo , Fermentação , Hidrogênio/metabolismo
6.
Enzyme Microb Technol ; 175: 110394, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277867

RESUMO

L-theanine is an amino acid with a unique flavor and many therapeutic effects. Its enzymatic synthesis has been actively studied and γ-Glutamylmethylamide synthetase (GMAS) is one of the promising enzymes in the biological synthesis of theanine. However, the theanine biosynthetic pathway with GMAS is highly ATP-dependent and the supply of external ATP was needed to achieve high concentration of theanine production. As a result, this study aimed to investigate polyphosphate kinase 2 (PPK2) as ATP regeneration system with hexametaphosphate. Furthermore, the alginate entrapment method was employed to immobilize whole cells containing both gmas and ppk2 together resulting in enhanced reusability of the theanine production system with reduced supply of ATP. After immobilization, theanine production was increased to 239 mM (41.6 g/L) with a conversion rate of 79.7% using 15 mM ATP and the reusability was enhanced, maintaining a 100% conversion rate up to the fifth cycles and 60% of conversion up to eighth cycles. It could increase long-term storage property for future uses up to 35 days with 75% activity of initial activity. Overall, immobilization of both production and cofactor regeneration system could increase the stability and reusability of theanine production system.


Assuntos
Alginatos , Carbono-Nitrogênio Ligases , Escherichia coli , Glutamatos , Fosfotransferases (Aceptor do Grupo Fosfato) , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Vet Med Sci ; 10(1): e1329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38050451

RESUMO

BACKGROUND: Porcine circovirus, a non-enveloped single-stranded DNA virus belonging to the genus Circovirus of the family Circoviridae, is a major pathogen of porcine circovirus-associated disease. Porcine circovirus 3, a novel porcine circovirus, has been identified in individuals with clinical symptoms. OBJECTIVES: The prevalence of porcine circovirus 2 and porcine circovirus 3 and the confirmation of diagnosis of this emerging viral disease have not been fully studied yet. Therefore, the objective of the present study was to investigate the prevalence of porcine circovirus 2 and porcine circovirus 3 in slaughtered pigs and wild boars in Korea between 2018 and 2019. METHODS: Lungs and hilar lymph nodes of healthy pigs slaughtered in slaughterhouses and captured wild pigs were collected, and viruses were detected by multiplex quantitative polymerase chain reaction and two staining methods (in situ hybridization and immunohistochemistry) to confirm the presence of porcine circovirus 2 and porcine circovirus 3. RESULTS: Positive rates of porcine circovirus 2 in lungs and hilar lymph nodes were 78.1% (75/96) and 89.5% (86/96) in slaughtered pigs, respectively. They were 18.0% (30/167) and 46.3% (24/55) in wild boars, respectively. Positive rates of porcine circovirus 3 in lungs and hilar lymph nodes were 30.2% (29/96) and 13.5% (13/96) in slaughtered pigs, respectively. They were 4.2% (7/167) and 5.5% (3/55) in wild boars, respectively. At the farm level, positive rates of porcine circovirus 2 and porcine circovirus 3 were 97.9% (47/48) and 54.2% (26/48), respectively. Positive rates of porcine circovirus 2 and porcine circovirus 3 decreased in spring. Immunohistochemistry and in situ hybridization confirmed the presence of porcine circovirus 2 and porcine circovirus 3 in lungs, but not porcine circovirus 3 in the hilar lymph nodes. CONCLUSION: These results suggest that the prevalence of porcine circovirus 2 and porcine circovirus 3 might vary depending on the season and the type of sample. Wild boars might play a role in the epidemiology of porcine circovirus 2 and porcine circovirus 3 in South Korea. Continuous surveillance and further study are needed for this emerging disease.


Assuntos
Infecções por Circoviridae , Circovirus , Doenças dos Suínos , Suínos , Animais , Circovirus/genética , Doenças dos Suínos/epidemiologia , Prevalência , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/veterinária , República da Coreia/epidemiologia , Sus scrofa
8.
Nat Prod Res ; : 1-8, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112430

RESUMO

Gelatinase A (MMP-2) has been studied and proven to play a vital role in the intrusion and metastasis of cancer. Flavonoids influence on molecular and cellular functions of MMP-2 and thus a systematic investigation of flavonoids against the metalloproteolytic activity of MMP-2 has been performed in this study. A fluorescence resonance energy transfer method was used to investigate the inhibitory activities of various flavonoids. Flavone, flavonol and isobavachalcone derivatives showed their inhibitory activity against MMP-2. Surprisingly, the most effective inhibitor was Amentoflavone and its blocking function was superior to other flavonoids. Its IC50 value was 0.689 µM. An induced-fit docking study was carried out to survey its extraordinary activity. The binding mode of Amentoflavone is quite similar to that of (2 ∼ {S})-2-[2-[4-(4-methoxyphenyl) phenyl] sulfanylphenyl] pentanedioic acid complexed with MMP-9. Amentoflavone interacts with the functional zinc and catalytic residue, Glu202. Therefore, the docking study reasonably confirmed the strong inhibitory activity of Amentoflavone.

9.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742913

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wreaked havoc all over the world. Although vaccines for the disease have recently become available and started to be administered to the population in various countries, there is still a strong and urgent need for treatments to cure COVID-19. One of the safest and fastest strategies is represented by drug repurposing (DRPx). In this study, thirty compounds with known safety profiles were identified from a chemical library of Phase II-and-up compounds through a combination of SOM Biotech's Artificial Intelligence (AI) technology, SOMAIPRO, and in silico docking calculations with third-party software. The selected compounds were then tested in vitro for inhibitory activity against SARS-CoV-2 main protease (3CLpro or Mpro). Of the thirty compounds, three (cynarine, eravacycline, and prexasertib) displayed strong inhibitory activity against SARS-CoV-2 3CLpro. VeroE6 cells infected with SARS-CoV-2 were used to find the cell protection capability of each candidate. Among the three compounds, only eravacycline showed potential antiviral activities with no significant cytotoxicity. A further study is planned for pre-clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Inteligência Artificial , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais
10.
Mol Cell Biol ; 42(2): e0038221, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34871062

RESUMO

The chemokine Cxcl10 has been associated with poor prognosis in breast cancer, but the mechanism is not well understood. Our previous study has shown that CXCL10 was repressed by the ING4 tumor suppressor, suggesting a potential inverse functional relationship. We thus investigated a role for Cxcl10 in the context of ING4 deficiencies in breast cancer. We first analyzed public gene expression data sets and found that patients with CXCL10-high/ING4-low expressing tumors had significantly reduced disease-free survival in breast cancer. In vitro, Cxcl10 induced migration of ING4-deleted breast cancer cells but not of ING4-intact cells. Using inhibitors, we found that Cxcl10-induced migration of ING4-deleted cells required Cxcr3, Egfr, and the Gßγ subunits downstream of Cxcr3 but not Gαi. Immunofluorescent imaging showed that Cxcl10 induced early transient colocalization between Cxcr3 and Egfr in both ING4-intact and ING4-deleted cells, which recurred only in ING4-deleted cells. A peptide agent that binds to the internal juxtamembrane domain of Egfr inhibited Cxcr3/Egfr colocalization and cell migration. Taken together, these results presented a novel mechanism of Cxcl10 that elicits migration of ING4-deleted cells, in part by inducing a physical or proximal association between Cxcr3 and Egfr and signaling downstream via Gßγ. These results further indicated that ING4 plays a critical role in the regulation of Cxcl10 signaling that enables breast cancer progression.


Assuntos
Proteínas de Ciclo Celular/deficiência , Quimiocina CXCL10/metabolismo , Receptores CXCR3/metabolismo , Proteínas Supressoras de Tumor/deficiência , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/genética , Receptores ErbB/metabolismo , Genes Supressores de Tumor/fisiologia , Proteínas de Homeodomínio , Humanos , Receptores CXCR3/genética
11.
Microorganisms ; 9(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916747

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), results in serious chaos all over the world. In addition to the available vaccines, the development of treatments to cure COVID-19 should be done quickly. One of the fastest strategies is to use a drug-repurposing approach. To provide COVID-19 patients with useful information about medicines currently being used in clinical trials, twenty-four compounds, including antiviral agents, were selected and assayed. These compounds were applied to verify the inhibitory activity for the protein function of 3CLpros (main proteases) of SARS-CoV and SARS-CoV-2. Among them, viral reverse-transcriptase inhibitors abacavir and tenofovir revealed a good inhibitory effect on both 3CLpros. Intriguingly, sildenafil, a cGMP-specific phosphodiesterase type 5 inhibitor also showed significant inhibitory function against them. The in silico docking study suggests that the active-site residues located in the S1 and S2 sites play key roles in the interactions with the inhibitors. The result indicates that 3CLpros are promising targets to cope with SAR-CoV-2 and its variants. The information can be helpful to design treatments to cure patients with COVID-19.

12.
J Enzyme Inhib Med Chem ; 36(1): 776-784, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33733972

RESUMO

d-Glycero-ß-d-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei (BpHldC) is the fourth enzyme in the ADP-l-glycero-ß-d-manno-heptose biosynthesis pathway producing a lipopolysaccharide core. Therefore, BpHldC is an anti-melioidosis target. Three ChemBridge compounds purchased from ChemBridge Corporation (San Diego, CA) were found to have an effective inhibitory activity on BpHldC. Interestingly, ChemBridge 7929959 was the most effective compound due to the presence of the terminal benzyl group. The enzyme kinetic study revealed that most of them show mixed type inhibitory modes against ATP and ßG1P. The induced-fit docking indicated that the medium affinity of ChemBridge 7929959 is originated from its benzyl group occupying the substrate-binding pocket of BpHldC. The inhibitory role of terminal aromatic groups was proven with ChemBridge 7570508. Combined with the previous study, ChemBridge 7929959 is found to work as a dual inhibitor against both HldC and HddC. Therefore, three ChemBridge compounds can be developed as a potent anti-melioidosis agent with a novel inhibitory concept.


Assuntos
Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidiltransferases/antagonistas & inibidores , Antibacterianos/síntese química , Antibacterianos/química , Burkholderia pseudomallei/enzimologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Nucleotidiltransferases/metabolismo
13.
Appl Opt ; 60(5): 1191-1195, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690549

RESUMO

We have developed a high-power ultraviolet (UV) nanosecond-pulsed laser based on a rod-type photonic crystal fiber. The UV pulse energy and the pulse repetition rate are 0.75 mJ and 100 kHz, respectively, yielding 75-W UV average power. The temporal pulse shape and the linewidth of a 1030-nm seed laser are optimized for efficient third-harmonic generation, and the high conversion efficiency of 50% is achieved with a good beam quality (M2∼1.2). To our knowledge, this is the highest UV pulse energy from fiber lasers.

14.
Arch Pharm (Weinheim) ; 354(6): e2000360, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33555065

RESUMO

Sugar nucleotidyltransferases (SNTs) participate in various biosynthesis pathways constructing polysaccharides in Gram-negative bacteria. In this study, a triple-targeting inhibitory activity of Rose Bengal against SNTs such as d-glycero-α-d-manno-heptose-1-phosphate guanylyltransferase (HddC), d-glycero-ß-d-manno-heptose-1-phosphate adenylyltransferase (HldC), and 3-deoxy-d-manno-oct-2-ulosonic acid cytidylyltransferase (KdsB) from Burkholderia pseudomallei is provided. Rose Bengal effectively suppresses the nucleotidyltransferase activity of the three SNTs, and its IC50 values are 10.42, 0.76, and 5.31 µM, respectively. Interestingly, Rose Bengal inhibits the three enzymes regardless of their primary, secondary, tertiary, and quaternary structural differences. The experimental results indicate that Rose Bengal possesses the plasticity to shape its conformation suitable to interact with the three SNTs. As HddC functions in the formation of capsular polysaccharides and HldC and KdsB produce building blocks to constitute the inner core of lipopolysaccharide, Rose Bengal is a potential candidate to design antibiotics in a new category. In particular, it can be developed as a specific antimelioidosis agent. As the mortality rate of the infected people caused by B. pseudomallei is quite high, there is an urgent need for specific antimelioidosis agents. Therefore, a further study is being carried out with derivatives of Rose Bengal.


Assuntos
Burkholderia pseudomallei , Melioidose , Nucleotidiltransferases/antagonistas & inibidores , Polissacarídeos Bacterianos/biossíntese , Rosa Bengala/farmacologia , Antibacterianos/farmacologia , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/enzimologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Melioidose/tratamento farmacológico , Melioidose/microbiologia
15.
Biochem J ; 478(1): 235-245, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33346350

RESUMO

Flavonoids play beneficial roles in various human diseases. In this study, a flavonoid library was employed to probe inhibitors of d-glycero-ß-d-manno-heptose-1-phosphate adenylyltransferase from Burkholderia pseudomallei (BpHldC) and two flavonoids, epigallocatechin gallate (EGCG) and myricetin, have been discovered. BpHldC is one of the essential enzymes in the ADP-l-glycero-ß-d-manno-heptose biosynthesis pathway constructing lipopolysaccharide of B. pseudomallei. Enzyme kinetics study showed that two flavonoids work through different mechanisms to block the catalytic activity of BpHldC. Among them, a docking study of EGCG was performed and the binding mode could explain its competitive inhibitory mode for both ATP and ßG1P. Analyses with EGCG homologs could reveal the important functional moieties, too. This study is the first example of uncovering the inhibitory activity of flavonoids against the ADP-l-glycero-ß-d-manno-heptose biosynthesis pathway and especially targeting HldC. Since there are no therapeutic agents and vaccines available against melioidosis, EGCG and myricetin can be used as templates to develop antibiotics over B. pseudomallei.


Assuntos
Burkholderia pseudomallei/enzimologia , Flavonoides/química , Manose/química , Nucleotidiltransferases/química , Piranos/química , Trifosfato de Adenosina/química , Catequina/análogos & derivados , Catequina/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Concentração Inibidora 50 , Cinética , Ligantes , Simulação de Acoplamento Molecular , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/metabolismo
16.
Cancers (Basel) ; 12(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291647

RESUMO

The human breast is composed of diverse cell types. Studies have delineated mammary epithelial cells, but the other cell types in the breast have scarcely been characterized. In order to gain insight into the cellular composition of the tissue, we performed droplet-mediated RNA sequencing of 3193 single cells isolated from a postmenopausal breast tissue without enriching for epithelial cells. Unbiased clustering analysis identified 10 distinct cell clusters, seven of which were nonepithelial devoid of cytokeratin expression. The remaining three cell clusters expressed cytokeratins (CKs), representing breast epithelial cells; Cluster 2 and Cluster 7 cells expressed luminal and basal CKs, respectively, whereas Cluster 9 cells expressed both luminal and basal CKs, as well as other CKs of unknown specificity. To assess which cell type(s) potentially contributes to breast cancer, we used the differential gene expression signature of each cell cluster to derive gene set variation analysis (GSVA) scores and classified breast tumors in The Cancer Gene Atlas (TGGA) dataset (n = 1100) by assigning the highest GSVA scoring cell cluster number for each tumor. The results showed that five clusters (Clusters 2, 3, 7, 8, and 9) could categorize >85% of breast tumors collectively. Notably, Cluster 2 (luminal epithelial) and Cluster 3 (fibroblast) tumors were equally prevalent in the luminal breast cancer subtypes, whereas Cluster 7 (basal epithelial) and Cluster 9 (other epithelial) tumors were present primarily in the triple-negative breast cancer (TNBC) subtype. Cluster 8 (immune) tumors were present in all subtypes, indicating that immune cells may contribute to breast cancer regardless of the subtypes. Cluster 9 tumors were significantly associated with poor patient survival in TNBC, suggesting that this epithelial cell type may give rise to an aggressive TNBC subset.

17.
J Enzyme Inhib Med Chem ; 35(1): 1539-1544, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32746637

RESUMO

Coronavirus disease 2019 (COVID-19) has been a pandemic disease of which the termination is not yet predictable. Currently, researches to develop vaccines and treatments is going on globally to cope with this disastrous disease. Main protease (3CLpro) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the good targets to find antiviral agents before vaccines are available. Some flavonoids are known to inhibit 3CLpro from SARS-CoV which causes SARS. Since their sequence identity is 96%, a similar approach was performed with a flavonoid library. Baicalin, herbacetin, and pectolinarin have been discovered to block the proteolytic activity of SARS-CoV-2 3CLpro. An in silico docking study showed that the binding modes of herbacetin and pectolinarin are similar to those obtained from the catalytic domain of SARS-CoV 3CLpro. However, their binding affinities are different due to the usage of whole SARS-CoV-2 3CLpro in this study. Baicalin showed an effective inhibitory activity against SARS-CoV-2 3CLpro and its docking mode is different from those of herbacetin and pectolinarin. This study suggests important scaffolds to design 3CLpro inhibitors to develop antiviral agents or health-foods and dietary supplements to cope with SARS-CoV-2.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Flavonoides/química , Pneumonia Viral/tratamento farmacológico , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Antivirais/química , Betacoronavirus , COVID-19 , Desenho de Fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Acoplamento Molecular , Pandemias , Poliproteínas , Inibidores de Proteases/química , Ligação Proteica , Conformação Proteica , SARS-CoV-2 , Espectrofotometria , Triptofano/química , Tratamento Farmacológico da COVID-19
18.
J Enzyme Inhib Med Chem ; 35(1): 1414-1421, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32588669

RESUMO

Frequent occurrences of multi-drug resistance of pathogenic Gram-negative bacteria threaten human beings. The CMP-2-keto-3-deoxy-d-manno-octulosonic acid biosynthesis pathway is one of the new targets for antibiotic design. 2-Keto-3-deoxy-d-manno-octulosonate cytidylyltransferase (KdsB) is the key enzyme in this pathway. KdsB proteins from Burkholderia pseudomallei (Bp), B. thailandensis (Bt), Pseudomonas aeruginosa (Pa), and Chlamydia psittaci (Cp) have been assayed to find inhibitors. Interestingly, Rose Bengal (4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein) was turned out to be an inhibitor of three KdsBs (BpKdsB, BtKdsB, and PaKdsB) with promising IC50 values and increased thermostability. The inhibitory enzyme kinetics of Rose Bengal revealed that it is competitive with 2-keto-3-deoxy-manno-octulosonic acid (KDO) but non-competitive against cytidine 5'-triphosphate (CTP). Induced-fit docking analysis of PaKdsB revealed that Arg160 and Arg185 together with other interactions in the substrate binding site seemed to play an important role in binding with Rose Bengal. We suggest that Rose Bengal can be used as the scaffold to develop potential antibiotics.


Assuntos
Antibacterianos/farmacologia , Nucleotidiltransferases/metabolismo , Rosa Bengala/farmacologia , Açúcares Ácidos/química , Estabilidade Enzimática , Concentração Inibidora 50 , Cinética , Nucleotidiltransferases/química , Corantes de Rosanilina/química
19.
J Enzyme Inhib Med Chem ; 35(1): 1045-1049, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32299265

RESUMO

African swine fever (ASF) caused by the ASF virus (ASFV) is the most hazardous swine disease. Since a huge number of pigs have been slaughtered to avoid a pandemic spread, intense studies on the disease should be followed quickly. Recent studies reported that flavonoids have various antiviral activity including ASFV. In this report, ASFV protease was selected as an antiviral target protein to cope with ASF. With a FRET (Fluorescence resonance energy transfer) method, ASFV protease was assayed with a flavonoid library which was composed of sixty-five derivatives classified based on ten different scaffolds. Of these, the flavonols scaffold contains a potential anti-ASFV protease activity. The most prominent flavonol was myricetin with IC50 of 8.4 µM. Its derivative, myricitrin, with the rhamnoside moiety was also showed the profound inhibitory effect on ASFV protease. These two flavonols apparently provide a way to develop anti-ASFV agents based on their scaffold.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Antivirais/farmacologia , Endopeptidases/metabolismo , Flavonoides/farmacologia , Proteínas Virais/antagonistas & inibidores , Vírus da Febre Suína Africana/enzimologia , Antivirais/química , Relação Dose-Resposta a Droga , Endopeptidases/genética , Flavonoides/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
J Enzyme Inhib Med Chem ; 35(1): 145-151, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31724441

RESUMO

There were severe panics caused by Severe Acute Respiratory Syndrome (SARS) and Middle-East Respiratory Syndrome-Coronavirus. Therefore, researches targeting these viruses have been required. Coronaviruses (CoVs) have been rising targets of some flavonoids. The antiviral activity of some flavonoids against CoVs is presumed directly caused by inhibiting 3C-like protease (3CLpro). Here, we applied a flavonoid library to systematically probe inhibitory compounds against SARS-CoV 3CLpro. Herbacetin, rhoifolin and pectolinarin were found to efficiently block the enzymatic activity of SARS-CoV 3CLpro. The interaction of the three flavonoids was confirmed using a tryptophan-based fluorescence method, too. An induced-fit docking analysis indicated that S1, S2 and S3' sites are involved in binding with flavonoids. The comparison with previous studies showed that Triton X-100 played a critical role in objecting false positive or overestimated inhibitory activity of flavonoids. With the systematic analysis, the three flavonoids are suggested to be templates to design functionally improved inhibitors.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Proteases 3C de Coronavírus , Cisteína Endopeptidases/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Flavonoides/síntese química , Flavonoides/química , Humanos , Estrutura Molecular , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Relação Estrutura-Atividade , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...